初中一元二次方程知识点总结最值(初中数学一元二次方程知识点)

1.初中数学一元二次方程知识点

只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程。ax2+bx+c=0(a≠0), 其中ax2叫做二次项,a叫做二次项的系数;bx叫做一次项,b叫做一次项的系数;c叫做常数项。一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理

判别式

b2-4ac=0 注:方程有两个相等的实根

b2-4ac>0 注:方程有两个不等的实根

b2-4ac

2.一元二次方程最大值与最小值公式

一元二次方程最大值与最小值公式:对于一元二次函数y=ax²+bx+c(a≠0)来说:当 x=-b/2a 时,有最值;且最值公式为:(4ac—b^2)/4a。

当a>0时,为最小值;当a 扩展资料:一元二次方程经过整理都可化成一般形式ax²+bx+c=0(a≠0)。其中ax²叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。

成立条件:一元二次方程成立必须同时满足三个条件:1、是整式方程,即等号两边都是整式,方程中如果有分母;且未知数在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号,那么这个方程也不是一元二次方程(是无理方程)。 2、只含有一个未知数;3、未知数项的最高次数是2。

3.所有函数知识点归纳总结 初中的

函数及其图像一、平面直角坐标系 在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。注意:x轴和y轴上的点,不属于任何象限。

二、不同位置的点的坐标的特征 1、各象限内点的坐标的特征 第一象限(+,+) 第二象限(-,+) 第三象限(-,-) 第四象限(+,-)2、坐标轴上的点的特征在x轴上纵坐标为0 , 在y轴上横坐标为, 原点坐标为(0,0)3、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上 x与y相等点P(x,y)在第二、四象限夹角平分线上 x与y互为相反数4、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。位于平行于y轴的直线上的各点的横坐标相同。

5、关于x轴、y轴或远点对称的点的坐标的特征点P与点p'关于x轴对称 横坐标相等,纵坐标互为相反数点P与点p'关于y轴对称 纵坐标相等,横坐标互为相反数点P与点p'关于原点对称 横、纵坐标均互为相反数6、点到坐标轴及原点的距离点P(x,y)到坐标轴及原点的距离:(1)到x轴的距离等于 (2)到y轴的距离等于 (3)到原点的距离等于 三、函数及其相关概念 1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。

2、函数的三种表示法(1)解析法(2)列表法(3)图像法3、由函数解析式画其图像的一般步骤(1)列表(2)描点(3)连线4、自变量取值范围四、正比例函数和一次函数 1、正比例函数和一次函数的概念一般地,如果 (k,b是常数,k 0),那么y叫做x的一次函数。特别地,当一次函数 中的b为0时, (k为常数,k 0)。

这时,y叫做x的正比例函数。2、一次函数的图像:是一条直线3、正比例函数的性质,,一般地,正比例函数 有下列性质:(1)当k>0时,图像经过第一、三象限,y随x的增大而增大;(2)当k<0时,图像经过第二、四象限,y随x的增大而减小。

4、一次函数的性质,,一般地,一次函数 有下列性质:(1)当k>0时,y随x的增大而增大(2)当k<0时,y随x的增大而减小5、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式 (k 0)中的常数k。确定一个一次函数,需要确定一次函数定义式 (k 0)中的常数k和b。

解这类问题的一般方法是待定系数法。6、设两条直线分别为, : : 若 且 。

若 7、平移:上加下减,左加右减。8、较点坐标求法:联立方程组五、反比例函数 1、反比例函数的概念一般地,函数 (k是常数,k 0)叫做反比例函数。

反比例函数的解析式也可以写成 或xy=k的形式。自变量x的取值范围是x 0的一切实数,函数的取值范围也是一切非零实数。

2、反比例函数的图像是双曲线。3、反比例函数的性质(1)当k>0时,函数图像的两个分支分别在第一、三象限。

在每个象限内,y随x 的增大而减小。 (2)当k<0时,函数图像的两个分支分别在第二、四象限。

在每个象限内,y随x 的增大而增大。(3) 图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

(4)图像既是轴对称图形又是中心对称图形(5)图像上任意一点向坐标轴作垂线,与坐标轴所围成矩形面积等于|k|4、反比例函数解析式的确定只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。六、二次函数 1、二次函数的概念:一般地,如果 ,那么y叫做x 的二次函数。

2、二次函数的图像是一条抛物线。3、二次函数的性质:(1)a>0抛物线开口向上,对称轴是x= ,顶点坐标是( , );在对称轴的左侧,即当x< 时,y随x的增大而减小;在对称轴的右侧,即当x> 时,y随x的增大而增大;抛物线有最低点,当x= 时,y有最小值, (2) a<0抛物线开口向下,对称轴是x= ,顶点坐标是( , );在对称轴的左侧,即当x< 时,y随x的增大而增大;在对称轴的右侧,即当x> 时,y随x的增大而减小,;抛物线有最高点,当x= 时,y有最大值, 4、.二次函数的解析式有三种形式:(1)一般式: (2)顶点式: (3)两根式: 5、抛物线 中, 的作用: 表示开口方向: >0时,抛物线开口向上,,, <0时,抛物线开口向下 与对称轴有关:对称轴为x= ,a与b左同右异 表示抛物线与y轴的交点坐标:(0, )6、二次函数与一元二次方程的关系一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标。

因此一元二次方程中的 ,在二次函数中表示图像与x轴是否有交点。当 >0时,图像与x轴有两个交点;当 =0时,图像与x轴有一个交点;当 <0时,图像与x轴没有交点。

7、求抛物线的顶点、对称轴的方法(1)公式法:顶点是 ,对称轴是直线 . (2)配方法:运用配方的方法,将抛物线的解析式化为 的形式,得到顶点为( , ),对称轴是直线 .8、平移: 可以由 平移得到。上加下减,左加右减。

不谢。

4.初中数学最全知识点

初中数学知识点总结 一、基本知识 一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数 数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。 绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。 减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。 除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。 乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。 2、实数 无理数:无限不循环小数叫无理数 平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。 立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

③每一个实数都可以在数轴上的一个点来表示。 3、代数式 代数式:单独一个数或者一个字母也是代数式。

合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。

③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。 4、整式与分式 整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。

②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。 幂的运算:AM+AN=A(M+N) (AM)N=AMN (A/B)N=AN/BN 除法一样。

整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。 公式两条:平方差公式/完全平方公式 整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。

②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。 分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

方法:提公因式法、运用公式法、分组分解法、十字相乘法。 分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。

②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。 分式的运算: 乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

除法:除以一个分式等于乘以这个分式的倒数。 加减法:①同分母分式相加减,分母不变,把分子相加减。

②异分母的分式先通分,化为同分母的分式,再加减。 分式方程:①分母中含有未知数的方程叫分式方程。

②使方程的分母为0的解称为原方程的增根。 B、方程与不等式 1、方程与方程组 一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。 解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。 二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。 二元。

5.初中数学知识点总结

有理数的加法运算 同号两数来相加,绝对值加不变号。

异号相加大减小,大数决定和符号。 互为相反数求和,结果是零须记好。

【注】“大”减“小”是指绝对值的大小。 有理数的减法运算 减正等于加负,减负等于加正。

有理数的乘法运算符号法则 同号得正异号负,一项为零积是零。 合并同类项 说起合并同类项,法则千万不能忘。

只求系数代数和,字母指数留原样。 去、添括号法则 去括号或添括号,关键要看连接号。

扩号前面是正号,去添括号不变号。 括号前面是负号,去添括号都变号。

解方程 已知未知闹分离,分离要靠移完成。 移加变减减变加,移乘变除除变乘。

平方差公式 两数和乘两数差,等于两数平方差。 积化和差变两项,完全平方不是它。

完全平方公式 二数和或差平方,展开式它共三项。 首平方与末平方,首末二倍中间放。

和的平方加联结,先减后加差平方。 完全平方公式 首平方又末平方,二倍首末在中央。

和的平方加再加,先减后加差平方。 解一元一次方程 先去分母再括号,移项变号要记牢。

同类各项去合并,系数化“1”还没好。 求得未知须检验,回代值等才算了。

解一元一次方程 先去分母再括号,移项合并同类项。系数化1还没好,准确无误不白忙。

因式分解与乘法 和差化积是乘法,乘法本身是运算。积化和差是分解,因式分解非运算。

因式分解 两式平方符号异,因式分解你别怕。两底和乘两底差,分解结果就是它。

两式平方符号同,底积2倍坐中央。 因式分解能与否,符号上面有文章。

同和异差先平方,还要加上正负号。同正则正负就负,异则需添幂符号。

因式分解 一提二套三分组,十字相乘也上数。 四种方法都不行,拆项添项去重组。

重组无望试求根,换元或者算余数。多种方法灵活选,连乘结果是基础。

同式相乘若出现,乘方表示要记住。 【注】 一提(提公因式)二套(套公式) 因式分解 一提二套三分组,叉乘求根也上数。

五种方法都不行,拆项添项去重组。 对症下药稳又准,连乘结果是基础。

二次三项式的因式分解 先想完全平方式,十字相乘是其次。两种方法行不通,求根分解去尝试。

比和比例 两数相除也叫比,两比相等叫比例。外项积等内项积,等积可化八比例。

分别交换内外项,统统都要叫更比。同时交换内外项,便要称其为反比。

前后项和比后项,比值不变叫合比。 前后项差比后项,组成比例是分比。

两项和比两项差,比值相等合分比。前项和比后项和,比值不变叫等比。

解比例 外项积等内项积,列出方程并解之。求比值 由已知去求比值,多种途径可利用。

活用比例七性质,变量替换也走红。 消元也是好办法,殊途同归会变通。

正比例与反比例 商定变量成正比,积定变量成反比。 正比例与反比例 变化过程商一定,两个变量成正比。

变化过程积一定,两个变量成反比。 判断四数成比例 四数是否成比例,递增递减先排序。

两端积等中间积,四数一定成比例。 判断四式成比例 四式是否成比例,生或降幂先排序。

两端积等中间积,四式便可成比例。 比例中项 成比例的四项中,外项相同会遇到。

有时内项会相同,比例中项少不了。比例中项很重要,多种场合会碰到。

成比例的四项中,外项相同有不少。 有时内项会相同,比例中项出现了。

同数平方等异积,比例中项无处逃。 根式与无理式 表示方根代数式,都可称其为根式。

根式异于无理式,被开方式无限制。 被开方式有字母,才能称为无理式。

无理式都是根式,区分它们有标志。 被开方式有字母,又可称为无理式。

求定义域 求定义域有讲究,四项原则须留意。负数不能开平方,分母为零无意义。

指是分数底正数,数零没有零次幂。限制条件不唯一,满足多个不等式。

求定义域要过关,四项原则须注意。负数不能开平方,分母为零无意义。

分数指数底正数,数零没有零次幂。限制条件不唯一,不等式组求解集。

解一元一次不等式 先去分母再括号,移项合并同类项。系数化“1”有讲究,同乘除负要变向。

先去分母再括号,移项别忘要变号。同类各项去合并,系数化“1”注意了。

同乘除正无防碍,同乘除负也变号。 解一元一次不等式组 大于头来小于尾,大小不一中间找。

大大小小没有解,四种情况全来了。 同向取两边,异向取中间。

中间无元素,无解便出现。 幼儿园小鬼当家,(同小相对取较小) 敬老院以老为荣,(同大就要取较大) 军营里没老没少。

(大小小大就是它) 大大小小解集空。(小小大大哪有哇) 解一元二次不等式 首先化成一般式,构造函数第二站。

判别式值若非负,曲线横轴有交点。 正开口它向上,大于零则取两边。

代数式若小于零,解集交点数之间。 方程若无实数根,口上大零解为全。

小于零将没有解,开口向下正相反。 用平方差公式因式分解 异号两个平方项,因式分解有办法。

两底和乘两底差,分解结果就是它。 用完全平方公式因式分解 两平方项在两端,底积2倍在中部。

同正两底和平方,全负和方相反数。 分成两底差平方,方正倍积要为负。

两边为负中间正,底差平方相反数。一平方又一平方,底积2倍在中路。

三正两底和平方,全负和方相反数。分成两底差平方,两端为正倍积负。

两边。

初中一元二次方程知识点总结最值

转载请注明出处百科知识网 » 初中一元二次方程知识点总结最值(初中数学一元二次方程知识点)

知识

初中生物知识点总结(初中生物知识点全归纳全!)

阅读(11)

本文主要为您介绍初中生物知识点总结,内容包括初中生物知识点全归纳、(全!),初中生物所有知识点重点难点,初中生物知识点总结初中生物课大致可根据内容分为几种类型的课初。原发布者:三一文库

知识

病理重点知识点总结(病理学重点)

阅读(10)

本文主要为您介绍病理重点知识点总结,内容包括病理学重点,病理学重点大一病理学课程,考点及重点,求病理学的考试重点~有谁能给咱点复习思路啊?感激啊~版本:病理。首先说明病理学的总论很重要,相较各论而言条理更清楚,内容显得不是那么繁杂。

知识

315维权知识总结(3·15家装行业剖析是否应该将维权进行到底?)

阅读(13)

本文主要为您介绍315维权知识总结,内容包括3·15家装行业剖析是否应该将维权进行到底?,超市在3.15消费者权益日要注意什么,“3·15国际消费者权益日”的影响是什么?。市消保委公布调查报告34。5%的纠纷难解疙瘩本报讯 本市家庭装潢市场中具

知识

茶文化茶知识的总结(中国茶文化知识有哪些)

阅读(11)

本文主要为您介绍茶文化茶知识的总结,内容包括中国茶文化知识,茶文化请谈谈您对茶文化的理解?,茶艺的基本知识都?。中国是茶的故乡,制茶、饮茶已有几千年历史,名品荟萃,主要品种有绿茶、红茶、乌龙茶、花茶、白茶、黄茶、黑茶。茶有健身、治疾

知识

七下各章知识点总结(七下科学第4章1~6小节的知识点总结)

阅读(12)

本文主要为您介绍七下各章知识点总结,内容包括七下科学第4章1~6小节的知识点总结,七年级下册数学每章的总结,回答不用太复杂,七下科学第4章1~6小节的知识点总结。在每章单元后面不都有知识总结吗?一般都是在那里的!不过,我倒可以给你这章复习

知识

初中生物知识点总结(初中生物知识点全归纳全!)

阅读(11)

本文主要为您介绍初中生物知识点总结,内容包括初中生物知识点全归纳、(全!),初中生物所有知识点重点难点,初中生物知识点总结初中生物课大致可根据内容分为几种类型的课初。原发布者:三一文库

知识

病理重点知识点总结(病理学重点)

阅读(10)

本文主要为您介绍病理重点知识点总结,内容包括病理学重点,病理学重点大一病理学课程,考点及重点,求病理学的考试重点~有谁能给咱点复习思路啊?感激啊~版本:病理。首先说明病理学的总论很重要,相较各论而言条理更清楚,内容显得不是那么繁杂。

知识

分析化学实验基础知识点(关于化学分析的知识?)

阅读(12)

本文主要为您介绍分析化学实验基础知识点,内容包括关于化学分析的知识?,化学问题解分析和推断题和物质检验要记住哪些东西/基础是什么爱问,分析化学知识点。1.掌握数学、物理等方面的基本理论和基本知识; 2.掌握无机化学、分析化学(含仪器分