数学必修四知识点总结归纳(高一数学必修四重点知识总结)

1.高一数学必修四重点知识总结

一 集合与简易逻辑

集合具有四个性质 广泛性 集合的元素什么都可以

确定性 集合中的元素必须是确定的,比如说是好学生就不具有这种性质,因为它的概念是模糊不清的

互异性 集合中的元素必须是互不相等的,一个元素不能重复出现

无序性 集合中的元素与顺序无关

二 函数

这是个重点,但是说起来也不好说,要作专题训练,比如说二次函数,指数对数函数等等做这一类型题的时候,要掌握几个函数思想如 构造函数 函数与方程结合 对称思想,换元等等

三 数列

这也是个比较重要的题型,做体的时候要有整体思想,整体代换,等比等差要分开来,也要注意联系,这样才能做好,注意观察数列的形式判断是什么数列,还要掌握求数列通向公式的几种方法,和求和公式,求和方法,比如裂项相消,错位相减,公式法,分组求和法等等

四 三角函数

三角函数不是考试题型,只是个应用的知识点,所以只要记熟特殊角的三角函数值和一些重要的定理就行

五 平面向量

这是个比较抽象的把几何与代数结合起来的重难点,结体的时候要有技巧,主要就是把基本知识掌握到位,注意拓展,另外要多做题,见的题型多,结体的时候就有思路,能够把问题简单化,有利于提高做题效率

高一的数学只是入门,只要把基础的掌握了,做题就没什么大问题了,数学就可以上130

2.高一必修四数学重要知识点

高中数学必修4知识点

2、角 的顶点与原点重合,角的始边与 轴的非负半轴重合,终边落在第几象限,则称 为第几象限角.

第一象限角的集合为

第二象限角的集合为

第三象限角的集合为

第四象限角的集合为

终边在 轴上的复角的集合为

终边在 轴上的角的集合为

终边在坐标轴上的角的集合为

3、与角 终边相同的角的集合为

4、已知 是第几象限角,确定 所在象限的方法:先把各象限均分 等份,再从 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则 原来是第几象限对应的标号即为 终边所落在的区域.

5、长度等于半径长的弧所对的圆心角叫做制 弧度.

6、半径为 的圆的圆心角 所对弧的长为 ,则角 的弧度数的绝对值是 .

7、弧度制与角度制的换算公式: , , .

8、若扇形的圆心角为 ,半径为 ,弧长为 ,周长为 ,面积为 ,则 , , .

9、设 是一个任意大小的角, 的终边上任意一点 的坐标是 ,它与原点的距离是 ,则 , , .

10、三角函数在各象限的符号:第一象限全zhidao为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.

3.高一数学必修4的知识点的总结

公式分类 同角三角函数的基本关系 tan α=sin α/cos α 平常针对不同条件的常用的两个公式 sin^2 α+cos^2 α=1 tan α *tan α 的邻角=1 锐角三角函数公式 正弦: sin α=∠α的对边/∠α 的斜边 余弦:cos α=∠α的邻边/∠α的斜边 正切:tan α=∠α的对边/∠α的邻边 余切:cot α=∠α的邻边/∠α的对边 二倍角公式 sin2A=2sinA•cosA cos2A=cos^2 A-sin^2 A=1-2sin^2 A=2cos^2 A-1 tan2A=(2tanA)/(1-tan^2 A) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin3a =sin(2a+a) =sin2acosa+cos2asina =2sina(1-sin^2a)+(1-2sin^2a)sina =3sina-4sin^3a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos^2a-1)cosa-2(1-cos^a)cosa =4cos^3a-3cosa sin3a=3sina-4sin^3a =4sina(3/4-sin^2a) =4sina[(√3/2)^2-sin^2a] =4sina(sin^260°-sin^2a) =4sina(sin60°+sina)(sin60°-sina) =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2] =4sinasin(60°+a)sin(60°-a) cos3a=4cos^3a-3cosa =4cosa(cos^2a-3/4) =4cosa[cos^2a-(√3/2)^2] =4cosa(cos^2a-cos^230°) =4cosa(cosa+cos30°)(cosa-cos30°) =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°) =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)] =-4cosacos(60°-a)[-cos(60°+a)] =4cosacos(60°-a)cos(60°+a) 上述两式相比可得 tan3a=tanatan(60°-a)tan(60°+a) 半角公式 tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. sin^2(a/2)=(1-cos(a))/2 cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a)) 和差化积 sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2] sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 和差化积 cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ -cosαsinβ 积化和差 sinαsinβ = [cos(α-β)-cos(α+β)] /2 cosαcosβ = [cos(α+β)+cos(α-β)]/2 sinαcosβ = [sin(α+β)+sin(α-β)]/2 cosαsinβ = [sin(α+β)-sin(α-β)]/2 双曲函数 sinh(a) = [e^a-e^(-a)]/2 cosh(a) = [e^a+e^(-a)]/2 tanh(a) = sin h(a)/cos h(a) 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot(2kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot(-α)= -cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五: 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)= cosα cos(π/2+α)= -sinα tan(π/2+α)= -cotα cot(π/2+α)= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan(π/2-α)= cotα cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα cos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα (以上k∈Z) A·sin(ωt+θ)+ B·sin(ωt+φ) = √{(A^2 +B^2 +2ABcos(θ-φ)} • sin{ ωt + arcsin[ (A•sinθ+B•sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} } √表示根号,包括{……}中的内容 诱导公式 sin(-α) = -sinα cos(-α) = cosα tan (-α)=-tanα sin(π/2-α) = cosα cos(π/2-α) = sinα sin(π/2+α) = cosα cos(π/2+α) = -sinα sin(π-α) = sinα cos(π-α) = -cosα sin(π+α) = -sinα cos(π+α) = -cosα tanA= sinA/cosA tan(π/2+α)=-cotα tan(π/2-α)=cotα tan(π-α)=-tanα tan(π+α)=tanα 诱导公式记背诀窍:奇变偶不变,符号看象限 万能公式 sinα=2tan(α/2)/[1+tan²(α/2)] cosα=[1-tan²(α/2)]/[1+tan²(α/2)] tanα=2tan(α/2)/[1-tan²(α/2)] 其它公式(1) (sinα)^2+(cosα)^2=1 (2)1+(tanα)^2=(secα)^2 (3)1+(cotα)^2=(cscα)^2 证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可 (4)对于任意非直角三角形,总有 tanA+tanB+tanC=tanAtanBtanC 证: A+B=π-C tan(A+B)=tan(π-C) (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC) 整理可得 tanA+tanB+tanC=tanAtanBtanC 得证 同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立 由tanA+tanB+tanC=tanAtanBtanC可得出以下结论 (5)cotAcotB+cotAcotC+cotBcotC=1 (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2) (7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC (8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC 其他非重点三角函数 csc(a) = 1/sin(a) sec(a) = 1/cos(a) 编辑本段内容规律 三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。

而掌握。

4.高一必修四数学重要知识点

高中数学必修4知识点 2、角 的顶点与原点重合,角的始边与 轴的非负半轴重合,终边落在第几象限,则称 为第几象限角. 第一象限角的集合为 第二象限角的集合为 第三象限角的集合为 第四象限角的集合为 终边在 轴上的角的集合为 终边在 轴上的角的集合为 终边在坐标轴上的角的集合为 3、与角 终边相同的角的集合为 4、已知 是第几象限角,确定 所在象限的方法:先把各象限均分 等份,再从 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则 原来是第几象限对应的标号即为 终边所落在的区域. 5、长度等于半径长的弧所对的圆心角叫做 弧度. 6、半径为 的圆的圆心角 所对弧的长为 ,则角 的弧度数的绝对值是 . 7、弧度制与角度制的换算公式: , , . 8、若扇形的圆心角为 ,半径为 ,弧长为 ,周长为 ,面积为 ,则 , , . 9、设 是一个任意大小的角, 的终边上任意一点 的坐标是 ,它与原点的距离是 ,则 , , . 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.。

5.高中数学必修4基础知识点

高中数学必修4知识点 第一章 三角函数 2、角 的顶点与原点重合,角的始边与 轴的非负半轴重合,终边落在第几象限,则称 为第几象限角. 第一象限角的集合为 第二象限角的集合为 第三象限角的集合为 第四象限角的集合为 终边在 轴上的角的集合为 终边在 轴上的角的集合为 终边在坐标轴上的角的集合为 3、与角 终边相同的角的集合为 4、长度等于半径长的弧所对的圆心角叫做 弧度. 5、半径为 的圆的圆心角 所对弧的长为 ,则角 的弧度数的绝对值是 . 6、弧度制与角度制的换算公式: ,,. 7、若扇形的圆心角为 ,半径为 ,弧长为 ,周长为 ,面积为 ,则,,. Pv x y A O M T 8、设 是一个任意大小的角, 的终边上任意一点 的坐标是 ,它与原点的距离是 ,则,,. 9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正, 第三象限正切为正,第四象限余弦为正. 10、三角函数线: ,,. 11、角三角函数的基本关系: ;. 12、函数的诱导公式: ,,. ,,. ,,. ,,. ,.,. 口诀:奇变偶不变,符号看象限.(是 的倍数) 13、①的图象上所有点向左(右)平移 个单位长度,得到函数 的图象;再将函数 的图象上所有点的横坐标伸长(缩短)到原来的 倍(纵坐标不变),得到函数 的图象;再将函数 的图象上所有点的纵坐标伸长(缩短)到原来的 倍(横坐标不变),得到函数 的图象. ②数 的图象上所有点的横坐标伸长(缩短)到原来的 倍(纵坐标不变),得到函数 的图象;再将函数 的图象上所有点向左(右)平移 个单位长度,得到函数 的图象;再将函数 的图象上所有点的纵坐标伸长(缩短)到原来的 倍(横坐标不变),得到函数 的图象. (都是相对于 而言) 14、函数 的性质: ①振幅: ;②周期: ;③频率: ;④相位: ;⑤初相: . 函数,当时,取得最小值为 ;当时,取得最大值为 ,则,,. 15、正弦函数、余弦函数和正切函数的图象与性质: 函 数 性 质 图象 定义域 值域 最值 当时, ;当 时, . 当时, ;当 时, . 既无最大值也无最小值 周期性 奇偶性 奇函数 偶函数 奇函数 单调性 在 上是增函数;在 上是减函数. 在 上是增函数;在 上是减函数. 在 上是增函数. 对称性 对称中心 对称轴 对称中心 对称轴 对称中心 无对称轴 第二章 平面向量 16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为 的向量. 单位向量:长度等于 个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式: . ⑷运算性质:①交换律: ; ②结合律: ;③. ⑸坐标运算:设, ,则. 18、向量减法运算: ⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设, ,则. 设、两点的坐标分别为 , ,则. 19、向量数乘运算: ⑴实数 与向量 的积是一个向量的运算叫做向量的数乘,记作 . ①; ②当时, 的方向与 的方向相同;当时, 的方向与 的方向相反;当时, . ⑵运算律:①;②;③. ⑶坐标运算:设 ,则. 20、向量共线定理:向量 与 共线,当且仅当有唯一一个实数 ,使. 设, ,其中 ,则当且仅当 时,向量 、共线. 21、平面向量基本定理:如果 、是同一平面内的两个不共线向量,那么对于这一平面内的任意向量 ,有且只有一对实数 、,使.(不共线的向量 、作为这一平面内所有向量的一组基底) 22、分点坐标公式:设点 是线段 上的一点, 、的坐标分别是 , ,当时,点 的坐标是 .(当 23、平面向量的数量积: ⑴ .零向量与任一向量的数量积为 . ⑵性质:设和 都是非零向量,则① .②当与 同向时, ;当与 反向时, ;或.③. ⑶运算律:①;②;③. ⑷坐标运算:设两个非零向量 , ,则. 若,则 ,或.设, ,则. 设、都是非零向量, ,,是与 的夹角,则. 第三章 三角恒等变换 24、两角和与差的正弦、余弦和正切公式: ⑴;⑵; ⑶;⑷; ⑸ (); ⑹ (). 25、二倍角的正弦、余弦和正切公式: ⑴. ⑵ 升幂公式 降幂公式 ,. ⑶. 26、(后两个不用判断符号,更加好用) 27、合一变形 把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 形式。

,其中 . 28、三角变换是运算化简的过程中运用较多的变换,提高三角变换能力,要学会创设条件,灵活运用三角公式,掌握运算,化简的方法和技能.常用的数学思想方法技巧如下: (1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的相异角,可根据角与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如: ①是 的二倍; 是 的二倍; 是 的二倍; 是 的二倍; ② ;问: ; ; ③;④;⑤ ;等等 (2)函数名称变换:三角变形中,常常需要变函数名称为同名函数。如在三角函数中正余弦是基础,通常化切为弦,变异名为同名。

(3)常数代换:在三角函数运算,求值,证明中,有时需要将常数转化为三角函数值,例如常数“1”的代换变形有: (4)幂的变换:降幂是三角变换时常用方法,对次数较高的三角函数式,一般采用。

数学必修四知识点总结归纳

转载请注明出处百科知识网 » 数学必修四知识点总结归纳(高一数学必修四重点知识总结)

知识

就业的知识总结(就业心得体会)

阅读(8)

本文主要为您介绍就业的知识总结,内容包括就业心得体会,就业训练营知识总结,求一篇就业指导的心得500字以上。最低0.27元/天开通百度文库会员,可在文库查看完整内容>原发布者:宗磊的快乐生活就业心得体会 通过这一个月就业就业指导课的学习,在

知识

粮油保管员基础知识初级(做粮油保管员有哪些技能)

阅读(6)

本文主要为您介绍粮油保管员基础知识初级,内容包括怎么入门粮食保管,怎么入门粮食保管,做粮油保管员技能。您好!作为新时代的粮油保管员,需要掌握很多现代化科技的技能。感官判定粮食质量根据《粮油保管员国家职业标准》中感官判断主要粮食质

知识

中药士知识点总结(求一篇中药士工作总结)

阅读(5)

本文主要为您介绍中药士知识点总结,内容包括求一篇中药士工作总结,初级中药士与中药师复习资料一样初级中药士与中药师复习资料一样,2016年中药士年终总结。主要写一下工作内容,取得的成绩,以及不足,最后提出合理化的建议或者新的努力方向。。

知识

朴素贝叶斯知识点总结(朴素贝叶斯的应用)

阅读(7)

本文主要为您介绍朴素贝叶斯知识点总结,内容包括如何理解朴素贝叶斯的"朴素,朴素贝叶斯的应用,朴素贝叶斯的模型。和决策树模型相比,朴素贝叶斯分类器(Naive Bayes Classifier,或 NBC)发源于古典数学理论,有着坚实的数学基础,以

知识

苏教版版数学三年级上册知识点总结(小学三年级数学知识点总结)

阅读(6)

本文主要为您介绍苏教版版数学三年级上册知识点总结,内容包括小学三年级数学知识点总结,小学三年级数学知识点总结,小学数学知识点归纳苏教版的。第1单元测量在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单

知识

人教版九年级语文下册知识点总结(人教版九年级下语文复习提纲)

阅读(8)

本文主要为您介绍人教版九年级语文下册知识点总结,内容包括人教版九年级下语文复习提纲,人教版九年级下语文复习提纲,九年级语文下册中考知识点(人教版)。必须得把考试说明中划定范围的古诗词背会,会默写,理解句子的意思(以防考变相默写,如:岑参的

知识

信贷担保基础知识(谁知道贷款担保的基本常识有没有啊)

阅读(6)

本文主要为您介绍信贷担保基础知识,内容包括谁知道贷款担保的基本常识有没有啊,银行信贷业务基本知识,信贷风控基础知识,需要掌握哪些关键点。不知道你想知道哪部分的,办理房屋抵押消费的话要分几种,一般消费类银行能批得都很少,比如房屋装修,

知识

房产基础知识培训心得体会(房产培训心得300字)

阅读(7)

本文主要为您介绍房产基础知识培训心得体会,内容包括房产培训心得300字,房产销售培训心得应该怎么写,写一篇房地产销售培训的感受培训前和培训后的感受要求1000字。去百度文库,查看完整内容>内容来自用户:es5xr7房地产培训心得体会从事房地产

知识

电信管理基础知识(电信业务基础知识是什么)

阅读(6)

本文主要为您介绍电信管理基础知识,内容包括电信业务基础知识是什么,电信业务基础知识是什么,去中国电信都要学些什么基本知识。电信业务基础知识 概念用户群是指 根据用户的本身性质确定的用户群体。2、用户组是指 根据人为设定的规则确定

知识

说明基础知识重要名言(表明基础的重要性的名言有哪些)

阅读(9)

本文主要为您介绍说明基础知识重要名言,内容包括表明基础的重要性的名言,关于基础的重要性的名言,说明复习知识重要的格言。表明基础的重要性的名言如下: 为学作事,忌求近功。--明·黄宗羲《明儒学案》 2、学者之患,在于好谈高妙,而自己脚根却

知识

中药士知识点总结(求一篇中药士工作总结)

阅读(5)

本文主要为您介绍中药士知识点总结,内容包括求一篇中药士工作总结,初级中药士与中药师复习资料一样初级中药士与中药师复习资料一样,2016年中药士年终总结。主要写一下工作内容,取得的成绩,以及不足,最后提出合理化的建议或者新的努力方向。。

知识

朴素贝叶斯知识点总结(朴素贝叶斯的应用)

阅读(7)

本文主要为您介绍朴素贝叶斯知识点总结,内容包括如何理解朴素贝叶斯的"朴素,朴素贝叶斯的应用,朴素贝叶斯的模型。和决策树模型相比,朴素贝叶斯分类器(Naive Bayes Classifier,或 NBC)发源于古典数学理论,有着坚实的数学基础,以

知识

苏教版版数学三年级上册知识点总结(小学三年级数学知识点总结)

阅读(6)

本文主要为您介绍苏教版版数学三年级上册知识点总结,内容包括小学三年级数学知识点总结,小学三年级数学知识点总结,小学数学知识点归纳苏教版的。第1单元测量在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单

知识

地理七年级下册知识点总结河北版(七年级下册地理人教版历史冀人版生物冀少版的复习)

阅读(8)

本文主要为您介绍地理七年级下册知识点总结河北版,内容包括七年级下册地理(人教版)、历史(冀人版)、生物(冀少版)的复习,初中地理七年级(下)知识点归纳,求七年级下学期地理知识归纳。七年级地理复习提纲 1. 在地球仪上找出北回归线,北极圈,南回归线,南

知识

高一数学必修2每一课知识总结(高一数学必修二知识点总结)

阅读(8)

本文主要为您介绍高一数学必修2每一课知识总结,内容包括高一数学必修二知识点总结,高一数学必修2知识点总结,高一数学必修2知识点总结。高中数学必修2知识点直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。

知识

高1必修4数学知识点总结(高一数学必修1和必修4的知识点总结)

阅读(7)

本文主要为您介绍高1必修4数学知识点总结,内容包括高一数学必修1和必修4的知识点总结,高一数学必修四重点知识总结,高一数学必修4的知识点的总结。高中数学必修1知识点 第一章 集合与函数概念 集合有关概念 集合的含义:某些指定的对象集在一

知识

高一数学必修4第二章知识点总结(高中数学必修4第二章重点)

阅读(5)

本文主要为您介绍高一数学必修4第二章知识点总结,内容包括高中数学必修4第二章重点,高一数学必修四前两章公式总结,高一数学必修四第一第二章知识总结。1.了解向量的实际背景,理解平面向量和向量相等的含义及向量的几何表示。2.掌握向量加、