高考数学集合基础知识(高中数学集合知识总结)

1.高中数学集合知识总结

高考一轮复习教案(集合) 一.课标要求:1.集合的含义与表示 (1)通过实例,了解集合的含义,体会元素与集合的“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;2.集合间的基本关系 (1)理解集合之间包含与相等的含义,能识别给定集合的子集;(2)在具体情境中,了解全集与空集的含义;3.集合的基本运算 (1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

二.命题走向 有关集合的高考试题,考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用Venn图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练。考试形式多以一道选择题为主,分值5分。

高考将继续体现本章知识的工具作用,多以小题形式出现,也会渗透在解答题的表达之中,相对独立。具体题型估计为:(1)热点是集合的基本概念、运算和工具作用。

三.要点精讲1.集合:某些指定的对象集在一起成为集合。(1)集合中的对象称元素,若a是集合A的元素,记作 ;若b不是集合A的元素,记作 ;(2)集合中的元素必须满足:确定性、互异性与无序性;确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立;互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素;无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关;(3)表示一个集合可用列举法、描述法或图示法;列举法:把集合中的元素一一列举出来,写在大括号内;描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。

具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

(4)常用数集及其记法:非负整数集(或自然数集),记作N;正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R。2.集合的包含关系:(1)集合A的任何一个元素都是集合B的元素,则称A是B的子集(或B包含A),记作A B(或 );集合相等:构成两个集合的元素完全一样。

若A B且B A,则称A等于B,记作A=B;若A B且A≠B,则称A是B的真子集,记作A B;(2)简单性质:1)A A;2) A;3)若A B,B C,则A C;4)若集合A是n个元素的集合,则集合A有2n个子集(其中2n-1个真子集);3.全集与补集:(1)包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U;(2)若S是一个集合,A S,则, = 称S中子集A的补集;(3)简单性质:1) ( )=A;2) S= , =S。4.交集与并集:(1)一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集。

交集 。(2)一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集。

。注意:求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。

5.集合的简单性质:(1) (2) (3) (4) ;(5) (A∩B)=( A)∪( B), (A∪B)=( A)∩( B)。四.典例解析 题型1:集合的概念 例1.设集合 ,若 , 解:由于 中 只能取到所有的奇数,而 中18为偶数。

则 。例2.设集合P={m|-1解:Q={m∈R|mx2+4mx-4①m=0时,-4②m综合①②知m≤0,∴Q={m∈R|m≤0}。

点评:该题考察了集合间的关系,同时考察了分类讨论的思想。集合 中含有参数m,需要对参数进行分类讨论,不能忽略m=0的情况。

题型2:集合的性质 例3.(2000广东,1)已知集合A={1,2,3,4},那么A的真子集的个数是( ) 点评:该题考察集合子集个数公式。注意求真子集时千万不要忘记空集 是任何非空集合的真子集。

同时,A不是A的真子集。变式题:同时满足条件:① ②若 ,这样的集合M有多少个,举出这些集合来。

答案:这样的集合M有8个。例4.已知全集 ,A={1, }如果 ,则这样的实数 是否存在?若存在,求出 ,若不存在,说明理由。

解:∵ ;∴ ,即 =0,解得 当 时, ,为A中元素;当 时, 当 时, ∴这样的实数x存在,是 或 。另法:∵ ∴ , ∴ =0且 ∴ 或 。

点评:该题考察了集合间的关系以及集合的性质。分类讨论的过程中“当 时, ”不能满足集合中元素的互异性。

此题的关键是理解符号 是两层含义: 。变式题:已知集合 , , ,求 解:由 可知,(1) ,或(2) 解(1)得 ,解(2)得 ,又因为当 时, 与。

2.高中数学第一章 集合知识详细内容

集合集合具有某种特定性质的事物的总体。

这里的“事物”可以是人,物品,也可以是数学元素。例如: 1、分散的人或事物聚集到一起;使聚集:紧急~。

2、数学名词。一组具有某种共同性质的数学元素:有理数的~。

3、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论。

康托(Cantor, G.F.P.,1845年—1918年,德国数学家先驱,是集合论的创始者,目前集合论的基本思想已经渗透到现代数学的所有领域。集合,在数学上是一个基础概念。

什么叫基础概念?基础概念是不能用其他概念加以定义的概念。集合的概念,可通过直观、公理的方法来下“定义”。

集合集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。

元素与集合的关系 元素与集合的关系有“属于”与“不属于”两种。集合与集合之间的关系 某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。

空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。

子集,真子集都具有传递性。 『说明一下:如果集合 A 的所有元素同时都是集合 B 的元素,则 A 称作是 B 的子集,写作 A ? B。

若 A 是 B 的子集,且 A 不等于 B,则 A 称作是 B 的真子集,一般写作 A ? B。 中学教材课本里将 ? 符号下加了一个 ≠ 符号(如右图), 不要混淆,考试时还是要以课本为准。

所有男人的集合是所有人的集合的真子集。』集合的几种运算法则 并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B} 交集: 以属于A且属于B的元 差集表示素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B} 例如,全集U={1,2,3,4,5} A={1,3,5} B={1,2,5} 。

那么因为A和B中都有1,5,所以A∩B={1,5} 。再来看看,他们两个中含有1,2,3,5这些个元素,不管多少,反正不是你有,就是我有。

那么说A∪B={1,2,3,5}。 图中的阴影部分就是A∩B。

有趣的是;例如在1到105中不是3,5,7的整倍数的数有多少个。结果是3,5,7每项减 集合1再相乘。

48个。 对称差集: 设A,B 为集合,A与B的对称差集AÅB定义为: AÅB=(A-B)∪(B-A) 例如:A={a,b,c},B={b,d},则AÅB={a,c,d} 对称差运算的另一种定义是: AÅB=(A∪B)-(A∩B) 无限集: 定义:集合里含有无限个元素的集合叫做无限集 有限集:令N*是正整数的全体,且N_n={1,2,3,……,n},如果存在一个正整数n,使得集合A与N_n一一对应,那么A叫做有限集合。

差:以属于A而不属于B的元素为元素的集合称为A与B的差(集)。记作:A\B={x│x∈A,x不属于B}。

注:空集包含于任何集合,但不能说“空集属于任何集合”. 补集:是从差集中引出的概念,指属于全集U不属于集合A的元素组成的集合称为集合A的补集,记作CuA,即CuA={x|x∈U,且x不属于A} 空集也被认为是有限集合。 例如,全集U={1,2,3,4,5} 而A={1,2,5} 那么全集有而A中没有的3,4就是CuA,是A的补集。

CuA={3,4}。 在信息技术当中,常常把CuA写成~A。

集合元素的性质 1.确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如“个子高的同学”“很小的数”都不能构成集合。这个性质主要用于判断一个集合是否能形成集合。

2.独立性:集合中的元素的个数、集合本身的个数必须为自然数。 3.互异性:集合中任意两个元素都是不同的对象。

如写成{1,1,2},等同于{1,2}。互异性使集合中的元素是没有重复,两个相同的对象在同一个集合中时,只能算作这个集合的一个元素。

4.无序性:{a,b,c}{c,b,a}是同一个集合。 5.纯粹性:所谓集合的纯粹性,用个例子来表示。

集合A={x|x<2},集合A 中所有的元素都要符合x<2,这就是集合纯粹性。 6.完备性:仍用上面的例子,所有符合x<2的数都在集合A中,这就是集合完备性。

完备性与纯粹性是遥相呼应的。集合有以下性质 若A包含于B,则A∩B=A,A∪B=B集合的表示方法集合常用大写拉丁字母来表示,如:A,B,C…而对于集合中的元素则用小写的拉丁字母来表示,如:a,b,c…拉丁字母只是相当于集合的名字,没有任何实际的意义。

将拉丁字母赋给集合的方法是用一个等式来表示的,例如:A={…}的形式。等号左边是大写的拉丁字母,右边花括号括起来的,括号内部是具有某种共同性质的数学元素。

常用的有列举法和描述法。 1.列举法﹕常用于表示有限集合,把集合中的所有元素一一列举出来﹐写在大括号内﹐这种表示集合的方法叫做列举法。

{1,2,3,……} 2.描述法﹕常用于表示无限集合,把集合中元素的公共属性用文字﹐符号或式子等描述出来﹐写在大括号内﹐这种表示集合的方法叫做描述法。{x|P}(x为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于π的正实数组成的集合表示为:{x|0

3.高一数学中关于集合的知识

集合 1. 研究集合必须注意集合元素的特征即三性(确定,互异,无序); 已知集合A={x,xy,lgxy},集合B={0,|x|,y},且A=B,则x+y= 2. 研究集合,首先必须弄清代表元素,才能理解集合的意义。

已知集合M={y|y=x2 ,x∈R},N={y|y=x2+1,x∈R},求M∩N;与集合M={(x,y)|y=x2 ,x∈R},N={(x,y)|y=x2+1,x∈R}求M∩N的区别。 3. 集合 A、B,时,你是否注意到“极端”情况:或;求集合的子集时是否忘记. 例如:对一切恒成立,求a的取植范围,你讨论了a=2的情况了吗? 4. 对于含有n个元素的有限集合M, 其子集、真子集、非空子集、非空真子集的个数依次为 如满足条件的集合M共有多少个 5. 解集合问题的基本工具是韦恩图; 某文艺小组共有10名成员,每人至少会唱歌和跳舞中的一项,其中7人会唱歌跳舞5人会,现从中选出会唱歌和会跳舞的各一人,表演一个唱歌和一个跳舞节目,问有多少种不同的选法? 6. 两集合之间的关系。

7. (CUA)∩( CU B) =CU(A∪B) (CUA)∪( CUB) = CU(A∩B);;。

4.高中数学集合部分的知识点有哪些

集合

(1)集合的含义与表示

①通过实例,了解集合的含义,体会元素与集合的“属于”关系。

②能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。

(2)集合间的基本关系

①理解集合之间包含与相等的含义,能识别给定集合的子集。

②在具体情境中,了解全集与空集的含义。

(3)集合的基本运算

①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。

②理解在给定集合中一个子集的补集的含义,会求给定子集的补集。

③能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用

5.高中数学的集合怎么学

集合是指具有某种特定性质的具体的或抽象的对象汇总而成的集体。其中,构成集合的这些对象则称为该集合的元素 。

例如,全中国人的集合,它的元素就是每一个中国人。通常用大写字母如A,B,S,T,。表示集合,而用小写字母如a,b,x,y,。表示集合的元素。若x是集合S的元素,则称x属于S,记为x∈S。若y不是集合S的元素,则称y不属于S,记为y∉S。

扩展资料

集合特性:

1、确定性

给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现。

2、互异性

一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。有时需要对同一元素出现多次的情形进行刻画,可以使用多重集,其中的元素允许出现多次。

3、无序性

一个集合中,每个元素的地位都是相同的,元素之间是无序的。集合上可以定义序关系,定义了序关系后,元素之间就可以按照序关系排序。但就集合本身的特性而言,元素之间没有必然的序。

6.高一集合知识总结

概念含有一个未知数且未知数的最高次数为2次的的不等式叫做一元二次不等式,它的一般形式是ax^2+bx+c>0或ax^2+bx+c=0时,二次三项式,ax^2+bx+c有两个实根,那么ax^2+bx+c总可分解为a(x-x1)(x-x2)的形式。

这样,解一元二次不等式就可归结为解两个一元一次不等式组。一元二次不等式的解集就是这两个一元一次不等式组的解集的并集。

还是举个例子吧。 下面我们看一组实例: 1) 莲塘一中高一三班全体同学 2) 所有小于10的质数 3) 2006年参加世界杯的所有国家 4) 方程 的所有解的集合 5) 我国个子高的人 6) 与10非常接近的数 师:通过上面的实例我们发现一个耐人寻味的问题,有一些对象构成的全体是确定,有些是不确定的,于是我们把能够确定的对象看做一个整体,就说这个整体是由这些对象的全体构成的集合。

1、定义:一般地,某些指定对象集在一起就成为一个集合。集合中的每个对象叫做这个集合的元素。

师:上面哪些是集合?元素是什么? 生:1)、2)、3)、4)、5)、6)和一些其他答案 师:看样子,大家意见不统一。集合是由元素构成的,要想确定集合必须先确定元素,那元素到底有哪些特性呢? 2、集合中元素的特性 1) 确定性:集合中的元素必须是确定的,不能是模糊不清的。

2) 互异性:集合中的任意两个元素必须是互不相同的。 3) 无序性:集合与其中元素的排列顺序无关。

师:此时,我们在来判断哪些是集合。 生:1)、2)、3)、4),因为5)、6)不满足确定性。

师:很好! 师:集合常用大写字母A、B、C、D等来表示。元素常用小写字母a、b、c等来表示。

3、元素与集合的关系 1) 如果是a集合A的元素,就说a属于集合A,记做:a A 2) 如果是A不是集合A的元素,就说a不属于集合A,记做:a A 注意; 和 只是表示元素与集合的关系。 例题: 1) A={2,4,6} 2 A 8 A 2) 请大家考虑:A={1,2}, B={{1,2},{2,3}},集合A与B的关系? 4、常见的集合专用符号:N、N 、Z、Q、R 三、课堂练习 1、课本第五页练习 2、用正确符号填空: ( )R,-2( )Q, ( )Q,6.5( )N,0( )N 3、考察下面每组对象能否构成集合?说明为什么。

1) 著名数学家 2) 莲塘一中全体教师 3) 直角坐标系内的所有点 4) 绝对值小于8的实数 5) 我国的小河流 评注: 整体性:其中“集在一起”,说明集合是指某些事物的整体,而不是指其中的个别事物。 确定性:其中“指定对象”,说明集合是有属于它的元素完全确定的,一个对象要么是他的元素,要么不是,二者必居其一。

由老师在一次解释上面几个例题。 一、首先介绍高中数学与初中数学学习特点的变化,帮助学生主动调控学习心理。

1、数学语言在抽象程度上突变。 高中的数学语言与初中有着显著的区别。

初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及抽象的集合符号语言、逻辑运算语言、函数语言、图形语言等。

高一年级的学生一开始的思维梯度太大,以至集合、映射、函数等概念难以理解,觉得离生活很远,似乎很“玄”。我们在教学中可以多应用理论联系实际降低思维难度,循序渐进地培养训练学生以形象、通俗的文字语言与符号语言和图形语言互相转化,提升学生的语言“悟”性。

2、思维方法向理性层次跃迁。 高中数学思维方法与初中阶段大不相同。

初中阶段,由于很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步,因式分解先看什么,再看什么,确定了常见的思维套路。因此,形成初中生在数学学习中习惯于这种机械的,便于操作的定势方式。

而高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了更高的要求。这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降是高一学生产生数学学习障碍的另一个原因。

我们在教学中要注重启发式教学,应用讨论式教学培养学生能力。当然,学生能力的发展是渐进的,不是一朝一夕的事,只要高一新生能努力摆脱初中的思维定势,就能较快从经验型抽象思维向理论型抽象思维过渡,最后还需初步形成辩证形思维。

3、知识内容的整体数量剧增 高中数学比初中数学的知识内容的“量”上急剧增加了,单位时间内接受知识信息的量与初中相比增加了许多,辅助练习、消化的课时相应地减少了。这也使很多学习被动的、依赖心理重的高一新生感到不适应。

这就需要我们在上课过程中,进行学习心理辅导,提出学习要求并及时检查督促:第一,要每天做好课前预习、课后的复习工作,并努力记牢重点知识;第二,要每周、每单元后及时区别新旧知识并体会他们的内在联系,使新知识顺利地同化于原有知识结构之中;第三,每单元测验后要及时改差错,否则知识信息量差错过大时,其记忆效果不会很好,影响学生学习的信心。第四,要多做总结、归类,建立主体的知识结构网络。

因此,要教会学生对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;体会几种学习方法:特殊到一般的类比法,由一例到一类,由一类到多类,由多类到统一;一般到特殊的特例法,使几类问题同构于同一知识方法进行发散思维等。 二、学会区别正常学。

7.高中数学所有知识点归纳

高考数学基础知识汇总第一部分 集合(1)含n个元素的集合的子集数为2^n,真子集数为2^n-1;非空真子集的数为2^n-2;(2) 注意:讨论的时候不要遗忘了 的情况。

(3) 第二部分 函数与导数1.映射:注意 ①第一个集合中的元素必须有象;②一对一,或多对一。2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ;⑤换元法 ;⑥利用均值不等式 ; ⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性( 、、等);⑨导数法3.复合函数的有关问题(1)复合函数定义域求法:① 若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。

(2)复合函数单调性的判定:①首先将原函数 分解为基本函数:内函数 与外函数 ;②分别研究内、外函数在各自定义域内的单调性;③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。注意:外函数 的定义域是内函数 的值域。

4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。5.函数的奇偶性⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;⑵ 是奇函数 ;⑶ 是偶函数 ;⑷奇函数 在原点有定义,则 ;⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;6.函数的单调性⑴单调性的定义:① 在区间 上是增函数 当 时有 ;② 在区间 上是减函数 当 时有 ;⑵单调性的判定1 定义法:注意:一般要将式子 化为几个因式作积或作商的形式,以利于判断符号;②导数法(见导数部分);③复合函数法(见2 (2));④图像法。

注:证明单调性主要用定义法和导数法。7.函数的周期性(1)周期性的定义:对定义域内的任意 ,若有 (其中 为非零常数),则称函数 为周期函数, 为它的一个周期。

所有正周期中最小的称为函数的最小正周期。如没有特别说明,遇到的周期都指最小正周期。

(2)三角函数的周期① ;② ;③ ;④ ;⑤ ;⑶函数周期的判定①定义法(试值) ②图像法 ③公式法(利用(2)中结论)⑷与周期有关的结论① 或 的周期为 ;② 的图象关于点 中心对称 周期为2 ;③ 的图象关于直线 轴对称 周期为2 ;④ 的图象关于点 中心对称,直线 轴对称 周期为4 ;8.基本初等函数的图像与性质⑴幂函数: ( ;⑵指数函数: ;⑶对数函数: ;⑷正弦函数: ;⑸余弦函数: ;(6)正切函数: ;⑺一元二次函数: ;⑻其它常用函数:1 正比例函数: ;②反比例函数: ;特别的 2 函数 ;9.二次函数:⑴解析式:①一般式: ;②顶点式: , 为顶点;③零点式: 。⑵二次函数问题解决需考虑的因素:①开口方向;②对称轴;③端点值;④与坐标轴交点;⑤判别式;⑥两根符号。

⑶二次函数问题解决方法:①数形结合;②分类讨论。10.函数图象: ⑴图象作法 :①描点法 (特别注意三角函数的五点作图)②图象变换法③导数法⑵图象变换:1 平移变换:ⅰ ,2 ———“正左负右” ⅱ ———“正上负下”;3 伸缩变换:ⅰ , ( ———纵坐标不变,横坐标伸长为原来的 倍;ⅱ , ( ———横坐标不变,纵坐标伸长为原来的 倍;4 对称变换:ⅰ ;ⅱ ;ⅲ ; ⅳ ;5 翻转变换:ⅰ ———右不动,右向左翻( 在 左侧图象去掉);ⅱ ———上不动,下向上翻(| |在 下面无图象);11.函数图象(曲线)对称性的证明(1)证明函数 图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明函数 与 图象的对称性,即证明 图象上任意点关于对称中心(对称轴)的对称点在 的图象上,反之亦然;注:①曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;②曲线C1:f(x,y)=0关于直线x=a的对称曲线C2方程为:f(2a-x, y)=0;③曲线C1:f(x,y)=0,关于y=x+a(或y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);④f(a+x)=f(b-x) (x∈R) y=f(x)图像关于直线x= 对称;特别地:f(a+x)=f(a-x) (x∈R) y=f(x)图像关于直线x=a对称;⑤函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;12.函数零点的求法:⑴直接法(求 的根);⑵图象法;⑶二分法.13.导数 ⑴导数定义:f(x)在点x0处的导数记作 ;⑵常见函数的导数公式: ① ;② ;③ ;④ ;⑤ ;⑥ ;⑦ ;⑧ 。

⑶导数的四则运算法则: ⑷(理科)复合函数的导数: ⑸导数的应用: ①利用导数求切线:注意:ⅰ所给点是切点吗?ⅱ所求的是“在”还是“过”该点的切线?②利用导数判断函数单调性:ⅰ 是增函数;ⅱ 为减函数;ⅲ 为常数; ③利用导数求极值:ⅰ求导数 ;ⅱ求方程 的根;ⅲ列表得极值。④利用导数最大值与最小值:ⅰ求的极值;ⅱ求区间端点值(如果有);ⅲ得最值。

14.(理科)定积分 ⑴定积分的定义: ⑵定积分的性质:① ( 常数);② ;③ (其中 。⑶微积分基本定理(牛顿—莱布尼兹公式): ⑷定积分的应用:①求曲边梯形的面积: ; 3 求变速直线运动的路程: ;③求变力做功: 。

第三部分 三角函数、三角恒等变换与解三角形1.⑴角度制与弧度制的互化: 弧度 , 弧度, 弧度 ⑵弧长公式: ;扇形面。

8.高一数学集合与二次函数基本常识

集合 集合具有某种特定性质的事物的总体。

这里的“事物”可以是人,物品,也可以是数学元素。例如:1、分散的人或事物聚集到一起;使聚集:紧急~。

2、数学名词。一组具有某种共同性质的数学元素:有理数的~。

3、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论。

康托(Cantor,G.F.P.,1845年—1918年,德国数学家先驱,是集合论的创始者,目前集合论的基本思想已经渗透到现代数学的所有领域。 集合,在数学上是一个基础概念。

什么叫基础概念?基础概念是不能用其他概念加以定义的概念。集合的概念,可通过直观、公理的方法来下“定义”。

集合 集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。

元素与集合的关系 元素与集合的关系有“属于”与“不属于”两种。 集合与集合之间的关系 某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。

空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。

子集,真子集都具有传递性。『说明一下:如果集合A的所有元素同时都是集合B的元素,则A称作是B的子集,写作A?B。

若A是B的子集,且A不等于B,则A称作是B的真子集,一般写作A?B。中学教材课本里将?符号下加了一个≠符号(如右图),不要混淆,考试时还是要以课本为准。

所有男人的集合是所有人的集合的真子集。』定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:一般式:y=ax²+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数。

顶点式:y=a(x-h)²+k或y=a(x+m)²+k (两个式子实质一样,但初中课本上都是第一个式子)交点式(与x轴):y=a(x-x1)(x-x2)重要概念:(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。)

二次函数表达式的右边通常为二次。x是自变量,y是x的二次函数x1,x2=[-b±√(b^2-4ac)]/2a(即一元二次方程求根公式)二次函数的图像在平面直角坐标系中作出二次函数y=x²的图像,可以看出,二次函数的图像是一条永无止境的抛物线。

不同的二次函数图像抛物线的性质1.抛物线是轴对称图形。对称轴为直线x = -b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b²)/4a )当-b/2a=0时,P在y轴上;当Δ= b²-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。当a>0时,抛物线向上开口;当a|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。当a与b同号时(即ab>0),对称轴在y轴左; 因为若对称轴在左边则对称轴小于0,也就是-b/2a<0,所以b/2a要大于0,所以a、b要同号当a与b异号时(即ab可简单记忆为左同右异即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。

可通过对二次函数求导得到。5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)6.抛物线与x轴交点个数Δ= b²-4ac>0时,抛物线与x轴有2个交点。Δ= b²-4ac=0时,抛物线与x轴有1个交点。

_______Δ= b²-4ac当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b²/4a;在{x|x<-b/2a}上是减函数,在{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b²/4a}相反不变当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax²+c(a≠0)7.定义域:R 值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b²)/4a,正无穷);②[t,正无穷) 奇偶性:偶函数 周期性:无 解析式: ①y=ax²+bx+c[一般式] ⑴a≠0 ⑵a>0,则抛物线开口朝上;a⑶极值点:(-b/2a,(4ac-b²)/4a); ⑷Δ=b²-4ac, Δ>0,图象与x轴交于两点: ([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0); Δ=0,图象与x轴交于一点: (-b/2a,0); Δ②y=a(x-h)²+t[配方式] 此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b²)/4a);③y=a(x-x1)(x-x2)[交点式]a≠0,此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方程连用)。二次函数与一元二次方程特别地,二次函数(以下称函数)y=ax²+bx+c,当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax²+bx+c=0此时,函数图像与x轴有无交点即方程有无实数根。

函数与x轴交点的横坐标即为方程的根。 1.二次函数y=ax²,y=a(x-h)²,y=a(x-h)² +k,y=ax²+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表: 解析式 y=ax²y=ax²+Ky=a(x-h)² y=a(x-h)²+k。

高考数学集合基础知识

转载请注明出处百科知识网 » 高考数学集合基础知识(高中数学集合知识总结)

知识

基础cad知识标注(cad基础常用知识)

阅读(6)

本文主要为您介绍基础cad知识标注,内容包括cad基础常用知识,cad中如何标注尺寸,cad中如何标注尺寸知识,AutoCAD入门教程:标注尺寸介绍。创建三维阵列 3A 创建三维面 3F 在三维空间创建由直线段组成的多段线 3P 在二维和三维空间中将某对象与

知识

教师基础理论知识考试真题(教师考试教育学心理学试题)

阅读(9)

本文主要为您介绍教师基础理论知识考试真题,内容包括教师考试教育学心理学试题,教师编制考试题型,河北省特岗教师小学数学真题中,教育理论基础知识都有什么题,每。试读结束,如需阅读或下载,请点击购买>原发布者:眼皮蹦跳跳单项选择题1.狭义的

知识

光伏企业基础知识(光伏发电基本常识)

阅读(10)

本文主要为您介绍光伏企业基础知识,内容包括光伏发电基本常识,光伏主要应该学习什么知识应聘时基本问什么,太阳能组件生产的基础知识。我就是做光伏发电了,基本常识太多了 我就列举几个:1.光伏指的是光生伏特效应,一定条件下光能产生电压,从而

知识

苏教版七上英语书知识点总结(苏教版七年级上册英语语法)

阅读(19)

本文主要为您介绍苏教版七上英语书知识点总结,内容包括苏教版七年级上册英语语法,苏教版七年级英语短语归纳,跪求苏教版初一英语的所有知识重点尽量快点。一. 词汇 ⑴ 单词 1. 介词:in, on, under, behind, near, at, of 1). in表示"在……中

知识

经济基础知识中级好考吗(中级经济师好考吗)

阅读(7)

本文主要为您介绍经济基础知识中级好考吗,内容包括中级经济师真的很难考吗通过率有多少,中级经济师好考吗,关于中级经济师,经济基础知识好考吗,太多曲线和难理解的东西了,。中级经济师好考吗?难还是不难?这不是一个能简单回答的问题。我们可

知识

oracle11g基础知识(Oracle11g入门学习)

阅读(7)

本文主要为您介绍oracle11g基础知识,内容包括Oracle11g入门学习,oracle11g基础与提高怎么样,Oracle11g服务详细介绍及哪些服务是必须开启的。如果想 系统的学 可以先看看 数据库组成原理 的书,了解基本的数据库知识。 oracle的体系比较庞大,

知识

常用公共基础知识(公共基础知识都包括哪些)

阅读(10)

本文主要为您介绍常用公共基础知识,内容包括公共基础知识都包括哪些,公共基础知识复习资料,公共基础知识里主要包括哪些内容。公共基础是当前我国公务员及一切获得国家财政编制身份的考试途径中必考科目。公共基础是综合性概念,它的内容包括

知识

混凝土设计原理知识点总结(关于混凝土的所有知识)

阅读(7)

本文主要为您介绍混凝土设计原理知识点总结,内容包括混凝土结构原理考试的重点,关于混凝土的所有知识,论文:关于学习《混凝土结构设计原理》的心得体贴会。关于混凝土方面的知识2008-09-03 22:22:41| 分类: 默认分类 | 标签: |字号大中小 订阅

知识

中国的农业知识点总结(八年级上册的地理中国的农业笔记急需)

阅读(6)

本文主要为您介绍中国的农业知识点总结,内容包括八年级上册的地理、中国的农业笔记、、急需,《农业经营与管理》第一章农业概述(知识总结),高中地理有关农业的知识点。人教版八上地理全册知识点总结我国位于亚欧大陆东部,东临太平洋,路上邻国14

知识

普通高中必修二物理知识点总结(物理必修二知识点总结)

阅读(7)

本文主要为您介绍普通高中必修二物理知识点总结,内容包括物理必修二知识点总结,物理必修2知识点总结(人教),高一物理必修二知识点的详细总结.。力 物体的平衡 1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因.

知识

医学中化学基础知识(化学中的基础知识大全)

阅读(9)

本文主要为您介绍医学中化学基础知识,内容包括化学中的基础知识大全,学临床医学需要“首先”掌握哪些化学知识,化学基础知识。化合反应 镁在空气中燃烧:2Mg + O2 点燃 2MgO 2、铁在氧气中燃烧:3Fe + 2O2 点燃 Fe3O4 3、铝在空气中燃烧

知识

光伏企业基础知识(光伏发电基本常识)

阅读(10)

本文主要为您介绍光伏企业基础知识,内容包括光伏发电基本常识,光伏主要应该学习什么知识应聘时基本问什么,太阳能组件生产的基础知识。我就是做光伏发电了,基本常识太多了 我就列举几个:1.光伏指的是光生伏特效应,一定条件下光能产生电压,从而

知识

经济基础知识中级好考吗(中级经济师好考吗)

阅读(7)

本文主要为您介绍经济基础知识中级好考吗,内容包括中级经济师真的很难考吗通过率有多少,中级经济师好考吗,关于中级经济师,经济基础知识好考吗,太多曲线和难理解的东西了,。中级经济师好考吗?难还是不难?这不是一个能简单回答的问题。我们可

知识

塑编行业基础知识(塑料编织带制作方法有哪些)

阅读(8)

本文主要为您介绍塑编行业基础知识,内容包括塑编袋分为几种,塑料编织带制作方法,编织袋主要原料。制作方法 塑料扁丝,塑编行业简称:扁丝,也有称为切割纤维,它是生产塑料编织物的基本材料,扁丝由特定品种的聚丙烯,聚乙烯树脂经熔融挤出成膜

知识

中高考语文基础知识共多少分(高考语文大概都能考多少分)

阅读(7)

本文主要为您介绍中高考语文基础知识共多少分,内容包括语文试卷基础知识至少占多少分,高考语文大概都能考多少分,高考把握了基础能上多少分。这个问题的话要看你是哪个省的了,因为各省的试卷格式是略有差别的,特别是江苏或上海之类的省. 先拿

知识

初一上册语文基础知识按单元(七年级上册语文1)

阅读(8)

本文主要为您介绍初一上册语文基础知识按单元,内容包括七年级上册语文15单元重点知识总结,初一上期语文知识点,人教版初一语文上册知识点整理。人教版七年级上册语文复习提纲与知识要点归纳--课文理解《在山的那边》选自《长江文艺》,作者王

知识

网络基础知识应用(网络应用基本常识有哪些)

阅读(12)

本文主要为您介绍网络基础知识应用,内容包括Internet基础应用,网络应用基本常识,网络基本知识都是哪些呀。HTML(Hyper Text Mark-up Language )即超文本标记语言,是 WWW 的描述语言,由 Tim Berners